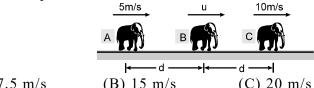

HW-1

1. Two cars A and B are racing along straight line. Car A is leading, such that their relative velocity is directly proportional to the distance between the two cars. When the lead of car A is $l_1 = 10$ m, its running 10 m/s faster than car B. Determine the time car A will take to increase its lead to $l_2 = 20$ m from car B.

- The driver in a running car is at _____with respect to the person in 2. the back seat of the car but is in with respect to a pedestrian on the road.
- There are three particles A, B & C are lying in a horizontal plane. The 3. particle B is situated 5 m due North from A and particle C is situated 30° East of North at a distance of $2\sqrt{3}$ m from A. These three particles start moving simultaneously along straight lines and collide after 2 seconds of their start. Particle A moves with constant velocity 5 m/s due 30° South of East. Find out the velocity vectors (constant) of the particles B & C. Assume unit vector \hat{i} in the east and \hat{j} in the north.
- 4. A train is standing on a platform, a man inside a compartment of a train drops a stone At the same instant train starts to move with constant acceleration. The path of the particle as seen by the person who drops the stone is:
 - (A) parabola
 - (B) straight line for sometime & parabola for the remaining time
 - (C) straight line
 - (D) variable path that cannot be defined
- A coin is released inside a lift at a height of 2 m from the floor of the lift. The height 5. of the lift is 10 m. The lift is moving with an acceleration of 9 m/s² downwards. The time after which the coin will strike with the lift is : $(g = 10 \text{ m/s}^2)$
 - (A) 4 s
- (B) 2 s
- (C) $\frac{4}{\sqrt{21}}$ s (D) $\frac{2}{\sqrt{11}}$ s
- A man in a balloon, throws a stone downwards with a speed of 5 m/s with respect to 6. balloon. The balloon is moving upwards with a constant acceleration of 5 m/s². Then velocity of the stone relative to the man after 2 second is:


(A) 10 m/s

(B) 30 m/s

(C) 15 m/s

(D) 35 m/s

- 7. A man is sitting inside a moving train and observes the objects outside of the train. Then choose the single correct choice from the following statements -
 - (A) all stationary objects outside the train will move with same velocity in opposite direction of the train with respect to the man.
 - (B) stationary objects near the train will move with greater velocity & object far from train will move with lesser velocity with respect to the man.
 - (C) large objects like moon or mountains will move with same velocity as that of the train.
 - (D) all of these.
- 8. A monkey is sitting on the branch of a tree at height 10 m. From the ground a man throws a stone with speed 10 m/s towards monkey to hit the monkey. At the instant stone is thrown monkey jumped off the tree with negligible velocity. Distance between man & monkey is 20 m. Which of the following is true -
 - (A) stone will not hit the monkey
 - (B) stone will hit the monkey after three second
 - (C) stone will hit the monkey after two seconds
 - (D) cannot be determined some more data is required
- 9. Three elephants A, B and C are moving along a straight line with constant speed in same direction as shown in figure. Speed of A is 5 m/s and speed of C is 10 m/s. Initially separation between A & B is 'd' and between B & C is also d. When 'B' catches 'C' separation between A & C becomes 3d. Then the speed of B will be -

(A) 7.5 m/s

- (B) 15 m/s(C) 20 m/s
- (D) 5 m/s
- 10. When two bodies move uniformly towards each other, the distance between them diminishes by 16 m every 10 s. If bodies move with velocities of the same magnitude and in the same direction as before the distance between then will decrease 3 m every 5 s. Calculate the velocity of each body.